您当前所在位置: 首页  师资队伍  员工名录  讲师
讲师
杨庆春
发布时间:2020-08-26    阅读次数:4366
姓 名:
杨庆春
职 称
讲师,硕士生导师
职 务:
 
所属系:
化工工艺系
邮 箱:
ceqcyang@hfut.edu.cn
电 话:
13167739808

个人简历

2008年09月–2012年06月,兰州理工大学石油化工学院化学工程与工艺专业学习,获工学学士学位;

2012年09月–2017年06月,华南理工大学化学与化工学院化学工程专业学习,获工学博士学位

主要研究领域、方向

硕士生招生专业:化学工程与技术(学术型);化学工程(专业型)

目前的研究方向:化工过程模拟与优化;智能化工技术与应用。

主讲本科生课程:化工设计、化工过程模拟、专业课程设计、毕业设计等。

研究成果(代表性成果)

(1)构建煤制乙二醇/甲醇/烯烃/IGCC/SNG/油等系统多尺度数学模型;

(2)成功开发多种低碳、高效、高经济效益的煤化工新工艺。

目前承担科研项目

(1)安徽省自然科学基金青年科学基金项目,低碳高效的煤制乙二醇过程开发与多目标优化(JZ2019AKZR0236),2019-07至2021-06,10万元,主持;

(2)安徽昊源化工集团有限公司合作项目,合成气经草酸二甲酯加氢合成乙二醇新工艺开发(HY202007-555),2020-06至2022-05,12万元,主持;

(3)合肥工业大学,学术新人提升A计划项目,JZ2018HGTA0278,煤制乙二醇过程基础模型、过程开发与优化,2018-05至2019-12,5万元,主持;

(4)合肥工业大学人才引进计划项目,煤/油页岩制油过程全生命周期分析(407-0371000045),2017-07至2018-06,4万元,主持;

(5)国家自然科学基金面上项目,油页岩炼制过程油气提质增效技术创新与系统集成(21676101),2017-01至2020-12,99万元,参与;

(6)国家科学技术部973项目,热解油气提质技术评价与高效炼制过程集成及多目标优化(2014CB744306),2014-01至2018-12,420万元,参与;

(7)国家自然科学基金委员会重点项目,资源/能源化工过程的全生命周期模型、系统分析与优化(21136003),2012-01至2016-12,300万元,参与;

(8)国家科学技术部973项目,能量/质量耦合梯级利用的多目标优化综合(2012CB720504),2012-01至2016-12,150万元,骨干参与

获奖及专利情况

获奖:

安徽省科学技术奖三等奖 1项(2020,排名7/10)


专利:

授权发明专利 4项

 [1]  一种集成化学链和二氧化碳利用技术的煤制甲醇系统及方法, 2018-3-19, 中国, ZL201810224796.7. 

 [2]  一种固体热载体油页岩炼制集成干馏气制氢系统及工艺, 2014-11-17, 中国, ZL201410652443.9. 

 [3] 一种油页岩干馏气化学链制氢联合发电系统及工艺, 2014-8-29, 中国, ZL201410436632.2. 

 [4] 一种油页岩炼油集成伴生煤气化制氢综合利用系统及工艺, 2014-6-11, 中国, ZL201410259090.6. 

著作论文(代表作)

[1] Conceptual design, techno-economic and environmental evaluation of a coal-based polygeneration process for ethylene glycol and polymethoxy dimethyl ethers production. Journal of Cleaner Production 2021, 298: 126757. 

[2] Opportunities for CO2 utilization in coal to green fuel process: optimal design and performance evaluation. ACS Sustainable Chemistry & Engineering 2020, 8: 1329-1342.

[3] Optimal design and exergy analysis of biomass-to-ethylene glycol process. Bioresource Technology 2020, 275: 123972. 

[4] Technoeconomic and environmental evaluation of oil shale to liquid fuels process in comparison with conventional oil refining process. Journal of Cleaner Production 2020, 255: 120198. 

[5] Technoeconomic and environmental analysis of ethylene glycol production from coal and natural gas compared with oil-based production. Journal of Cleaner Production 2020, 273: 123120. 

[6] Comparative techno-economic analysis of oil-based and coal-based ethylene glycol processes. Energy Conversion and Management 2019, 198: 111814. 

[7] Thermodynamic and techno-economic analysis of coal to ethylene glycol process (CtEG) with different coal gasifiers. Energy Conversion and Management 2019, 191: 80-92. 

[8] Efficient utilization of CO2 in a coal to ethylene glycol process integrated with dry/steam-mixed reforming: conceptual design and techno-economic analysis. ACS Sustainable Chemistry & Engineering 2019; 7: 3496-3510. 

[9] Life cycle comparison of greenhouse gas emissions and water consumption for coal and oil shale to liquid fuels. Resources, Conservation and Recycling 2019; 144: 74-81. 

[10] Process simulation, analysis and optimization of a coal to ethylene glycol process. Energy 2018; 155: 521-534. 

[11] Composite Metric for Simultaneous Technical and Economic Analysis and Optimization of Energy Conversion Processes. Journal of Cleaner Production 2018; 179: 266-277.

[12] Development of a coke oven gas assisted coal to ethylene glycol process for high techno-economic performance and low emission. Industrial & Engineering Chemistry Research 2018; 57: 7600-7612.

[13] Simulation, exergy analysis and optimization of a shale oil hydrogenation process for clean fuels production. Applied Thermal Engineering 2018; 140: 102-111. 

[14] Advanced exergy analysis of an oil shale retorting process. Applied Energy 2016; 165: 405-415. 

[15] Framework for Advanced Exergoeconomic Performance Analysis and Optimization of an Oil Shale Retorting Process. Energy 2016; 109: 62-76. 

[16] Conceptual design and techno-economic evaluation of efficient oil shale refinery process with oil and gas products upgradation. Energy Conversion and Management 2016; 126: 898-908. 

[17] Application of House of Quality in evaluation of low rank coal pyrolysis polygeneration technologies. Energy Conversion and Management 2015; 99: 231-241. 

[18] Development of an Oil Shale Retorting Process Integrated with Chemical Looping for Hydrogen Production. Industrial & Engineering Chemistry Research 2015; 54: 6156-6164. 

[19] 石油与煤路线制乙二醇过程的技术经济分析. 化工学报 2020; 71(5): 2164-2172. 

[20] 集成CO2高效利用的煤制乙二醇过程设计与系统分析. 化工学报 2019; 70(2): 772-779. 

地址:安徽省合肥市屯溪路193号  邮编:230009  电话:+86 551 62901450  邮箱:hxhgxy@hfut.edu.cn
版权所有:合肥工业大学化学与化工学院   管理员登录
关注学院微信公众号: